Di Prodia ada Anti SARS-CoV-2-Kuantitatif, untuk cek titer antibodi seseorang yang ada di tubuh. DIsarankannya untuk yang sudah vaksin atau penyintas vaksin, dan yang ingin mendonor plasma konvalesen," tambahnya. Namun yang pasti Dinar menjelaskan bahwa Prodia akan memberi catatan pada hasil tes serologi baik mau yang non reaktif atau reaktif.

. 2021 Aug 18;599e0028821. doi Epub 2021 Aug 18. Affiliations PMID 34260272 PMCID PMC8373017 DOI Free PMC article Performance of the Abbott SARS-CoV-2 IgG II Quantitative Antibody Assay Including the New Variants of Concern, VOC 202012/V1 United Kingdom and VOC 202012/V2 South Africa, and First Steps towards Global Harmonization of COVID-19 Antibody Methods Emma English et al. J Clin Microbiol. 2021. Free PMC article Abstract In the initial stages of the severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 COVID-19 pandemic, a plethora of new serology tests were developed and introduced to the global market. Many were not evaluated rigorously, and there is a significant lack of concordance in results across methods. To enable meaningful clinical decisions to be made, robustly evaluated, quantitative serology methods are needed. These should be harmonized to a primary reference material, allowing for the comparison of trial data and improved clinical decision making. A comprehensive evaluation of the new Abbott IgG II anti-SARS-CoV-2 IgG method was undertaken using CLSI-based protocols. Two different candidate primary reference materials and verification panels were assessed with a goal to move toward harmonization. The Abbott IgG II method performed well across a wide range of parameters with excellent imprecision < and was linear throughout the positive range tested to 38,365 AU/ml. The sensitivity based on ≄14-day post-positive reverse transcription-PCR [RT-PCR] samples and specificity were to and to 100%, respectively. The candidate reference materials showed poor correlation across methods, with mixed responses noted in methods that use the spike protein versus the nucleocapsid proteins as their binding antigen. The Abbott IgG II anti-SARS-CoV-2 measurement appears to be the first linear method potentially capable of monitoring the immune response to natural infection, including from new emerging variants. The candidate reference materials assessed did not generate uniform results across several methods, and further steps are needed to enable the harmonization process. Keywords COVID-19; SARS-CoV-2; analytical performance; antibody assay; evaluation; harmonization; serology; variants. Figures FIG 1 Linearity of method over the complete working range of the Abbott IgG II assay using a range of dilutions of a high positive mean, 38,365 AU/ml in the Abbott diluent. Dash-dot line indicates the identity line. The darker dotted line represents the 95% likelihood asymmetrical CI of the slope. FIG 2 Cohen’s kappa concordance analysis of the assays and overall all samples included agreement of results given as percent. Equivocal results were considered negative. FIG 3 Representative examples of the quantitative immune response in three different variants of the SARS-CoV-2 virus, including the “UK” and “South Africa” variants. The days post-PCR do not necessarily correlate to the day of onset of symptoms or the day of hospitalization. FIG 4 Comparison graphs of the values obtained for the Technopath positive panel with different methods A Abbott IgG II versus DiaSorin Liaison XL; B Abbott IgG II versus EDI; C Abbott IgG II quantitative S versus Abbott IgG qualitative R. Only the Abbott quantitative assay showed linearity r2 = and was plotted against DiaSorin, quadratic r2 = A, EDI, 4-PL r2 = B, and Abbott qualitative, 4-PL r2 = C. FIG 5 Dilution of NIBSC working standard 20/162 using the Abbott diluent. Dash-dot line indicates the identity line. The darker dotted line represents the 95% likelihood asymmetrical CI of the slope. Similar articles Clinical and analytical evaluation of the Abbott AdviseDx quantitative SARS-CoV-2 IgG assay and comparison with two other serological tests. Maine GN, Krishnan SM, Walewski K, Trueman J, Sykes E, Sun Q. Maine GN, et al. J Immunol Methods. 2022 Apr;503113243. doi Epub 2022 Feb 16. J Immunol Methods. 2022. PMID 35181288 Free PMC article. SARS-CoV-2 Antibody Testing in Health Care Workers A Comparison of the Clinical Performance of Three Commercially Available Antibody Assays. Allen N, Brady M, Carrion Martin AI, Domegan L, Walsh C, Houlihan E, Kerr C, Doherty L, King J, Doheny M, Griffin D, Molloy M, Dunne J, Crowley V, Holmes P, Keogh E, Naughton S, Kelly M, O'Rourke F, Lynagh Y, Crowley B, de Gascun C, Holder P, Bergin C, Fleming C, Ni Riain U, Conlon N; PRECISE Study Steering Group. Allen N, et al. Microbiol Spectr. 2021 Oct 31;92e0039121. doi Epub 2021 Sep 29. Microbiol Spectr. 2021. PMID 34585976 Free PMC article. A Qualitative Comparison of the Abbott SARS-CoV-2 IgG II Quant Assay against Commonly Used Canadian SARS-CoV-2 Enzyme Immunoassays in Blood Donor Retention Specimens, April 2020 to March 2021. Abe KT, Rathod B, Colwill K, Gingras AC, Tuite A, Robbins NF, Orjuela G, Jenkins C, Conrod V, Yi QL, O'Brien SF, Drews SJ. Abe KT, et al. Microbiol Spectr. 2022 Jun 29;103e0113422. doi Epub 2022 Jun 2. Microbiol Spectr. 2022. PMID 35652636 Free PMC article. Efficacy of frontline chemical biocides and disinfection approaches for inactivating SARS-CoV-2 variants of concern that cause coronavirus disease with the emergence of opportunities for green eco-solutions. Rowan NJ, Meade E, Garvey M. Rowan NJ, et al. Curr Opin Environ Sci Health. 2021 Oct;23100290. doi Epub 2021 Jul 3. Curr Opin Environ Sci Health. 2021. PMID 34250323 Free PMC article. Review. Recapping the Features of SARS-CoV-2 and Its Main Variants Status and Future Paths. Ortega MA, GarcĂ­a-Montero C, Fraile-Martinez O, Colet P, Baizhaxynova A, Mukhtarova K, Alvarez-Mon M, Kanatova K, AsĂșnsolo A, SarrĂ­a-Santamera A. Ortega MA, et al. J Pers Med. 2022 Jun 18;126995. doi J Pers Med. 2022. PMID 35743779 Free PMC article. Review. Cited by The changing profile of SARS-CoV-2 serology in Irish blood donors. Coyne D, Butler D, Meehan A, Keogh E, Williams P, Carterson A, Hervig T, O'Flaherty N, Waters A. Coyne D, et al. Glob Epidemiol. 2023 Dec;5100108. doi Epub 2023 Apr 21. Glob Epidemiol. 2023. PMID 37122774 Free PMC article. Mix-and-match COVID-19 vaccines trigger high antibody response after the third dose vaccine in Moroccan health care workers. Amellal H, Assaid N, Akarid K, Maaroufi A, Ezzikouri S, Sarih M. Amellal H, et al. Vaccine X. 2023 Aug;14100288. doi Epub 2023 Mar 25. Vaccine X. 2023. PMID 37008956 Free PMC article. Impact of MERS-CoV and SARS-CoV-2 Viral Infection on Immunoglobulin-IgG Cross-Reactivity. AlKhalifah JM, Seddiq W, Alshehri MA, Alhetheel A, Albarrag A, Meo SA, Al-Tawfiq JA, Barry M. AlKhalifah JM, et al. Vaccines Basel. 2023 Feb 26;113552. doi Vaccines Basel. 2023. PMID 36992136 Free PMC article. Dynamics of Anti-S IgG Antibodies Titers after the Second Dose of COVID-19 Vaccines in the Manual and Craft Worker Population of Qatar. Bansal D, Atia H, Al Badr M, Nour M, Abdulmajeed J, Hasan A, Al-Hajri N, Ahmed L, Ibrahim R, Zamel R, Mohamed A, Pattalaparambil H, Daraan F, Chaudhry A, Oraby S, El-Saleh S, El-Shafie SS, Al-Farsi AF, Paul J, Ismail A, Al-Romaihi HE, Al-Thani MH, Doi SAR, Zughaier SM, Cyprian F, Farag E, Farooqui HH. Bansal D, et al. Vaccines Basel. 2023 Feb 21;113496. doi Vaccines Basel. 2023. PMID 36992080 Free PMC article. Quantification of Severe Acute Respiratory Syndrome Coronavirus 2 Binding Antibody Levels To Assess Infection and Vaccine-Induced Immunity Using WHO Standards. Pernet O, Balog S, Kawaguchi ES, Lam CN, Anthony P, Simon P, Kotha R, Sood N, Hu H, Kovacs A. Pernet O, et al. Microbiol Spectr. 2023 Feb 14;111e0370922. doi Epub 2023 Jan 23. Microbiol Spectr. 2023. PMID 36688648 Free PMC article. References Worldometer. 2021. COVID-19 coronavirus pandemic. Dover, DE, USA. Accessed 10 January 2021. World Health Organization. 2021. Weekly epidemiological update on COVID-19 – 16 March 2021. World Health Organization, Geneva, Switzerland. Krammer F. 2020. SARS-CoV-2 vaccines in development. Nature 586516–527. - DOI - PubMed Department of Health and Social Care. 2021. UK COVID-19 vaccines delivery plan. Department of Health and Social Care, London, United Kingdom. Khoury DS, Wheatley AK, Ramuta MD, Reynaldi A, Cromer D, Subbarao K, O'Connor DH, Kent SJ, Davenport MP. 2020. Measuring immunity to SARS-CoV-2 infection comparing assays and animal models. Nat Rev Immunol 20727–738. - DOI - PMC - PubMed Publication types MeSH terms Substances LinkOut - more resources Full Text Sources Atypon Europe PubMed Central PubMed Central Medical Genetic Alliance MedlinePlus Health Information Miscellaneous NCI CPTAC Assay Portal
Berdasarkaninformasi dari akun Instagram resminya, Pramita Lab menyediakan fasilitas layanan untuk pemeriksaan RT PCR SARS Cov-2 dengan tarif sebesar Rp275.000 Tes Serologi Antibodi Kuantitatif. Ahmad Yani, Bandung. Alamat : Jl. Jendral Ahmad Yani No.242, Merdeka, Sumur Bandung, Bandung, Jawa Barat – 40113.
Dear Editor,The Coronavirus disease 2019 COVID-19 pandemic has caused over 670 million cases and million deaths worldwide, many of which are attributed to cardiovascular complications. Virus-induced endothelial damage, endothelial barrier dysfunction, thrombosis, and cytokine storm are implicated in heart and multi-organ failure. The prognosis is worsened by comorbidities, including diabetes and arterial hypertension, characterized by an inflammatory and pro-thrombotic milieu and upregulation of total and glycosylated Angiotensin-Converting Enzyme 2 ACE2 in pericytes represent a preferential target of SARS-CoV-2 These perivascular cells preserve vascular integrity through physical and paracrine crosstalk with capillary endothelial cells. Pericyte dysfunction and detachment favor the SARS-CoV-2 to spread from the bloodstream and damage the infection starts with the engagement of the Spike S-protein with its cellular ACE-2 and CD147 receptors. Due to the homology with human proteins, the S-protein also acts as a natural ligand activating the ERK1/2 MAPK signaling pathway in cardiac Some evidence suggests that the S-protein, CD147, cyclophilin, and MAPK axis are essential in triggering the cytokine However, an in vivo demonstration of the S-protein’s direct damaging effect on cardiac pericytes is present study investigated the acute effects of intravenously injected S-protein on the heart microvasculature of otherwise healthy mice. Moreover, we analyzed the expressional changes caused by the S-protein in primary cultures of human cardiac pericytes using bulk RNA-Sequencing. Finally, the RNA-Sequencing data were cross-referenced with single-nuclei sn-RNA-Sequencing datasets of COVID-19 patients’ hearts to determine how expressional changes after SARS-CoV-2 infection overlap with those caused by the S-protein healthy CD1 mice 6 male, 6 female were randomized to receive either 10 ”g endotoxin-free S-protein resuspended in 100 ”L sterile PBS or PBS only, intravenously. They were culled three days later for molecular and histological analyses Fig. 1a. S-protein immunoreactive levels in the circulation were like those reported in COVID-19 patients early after infection and before seroconversion ± ng/mL.7 Immunohistochemistry of the hearts demonstrated that the S-protein, although not altering the capillary density, increased the fraction that expresses ICAM-1, an adhesion molecule implicated in leucocyte-endothelial interactions Fig. 1b and remarkably reduced the pericyte density, coverage, and viability Fig. 1c–e. SARS-CoV-2 can trigger direct or indirect activation of all three complement Here, we show that the in vivo administration of S-protein increased complement-activated C5a protein levels in peripheral blood and the heart Fig. 1f, g. Moreover, the S-protein increased the heart’s abundance of CD45+ immune cells ± cells/mm2 vs. ± cell/mm2 in PBS-treated mice, specifically Ly6G/6C+ neutrophils/monocytes Fig. 1h and F4/80+ macrophages Fig. 1i. Leucocytes can crawl along pericyte processes to enlarged gaps between adjacent pericytes in an ICAM-1-dependent manner during inflammation. Controls for immunohistochemistry stainings are provided in Supplementary Fig. 1a–i Injection of S-protein in vivo in mice. a Experimental design of the in vivo study in mice. b Representative immunofluorescence images of mice hearts showing capillaries IB4, green and activated endothelium ICAM-1, red. Bar graphs summarize the quantitative analysis of capillaries positive for ICAM-1, expressed as a percentage of total vessels. c Representative immunofluorescence images showing capillaries IB4, green and pericytes PDGFRÎČ, red. Bar graphs summarize the quantitative analysis of pericyte density. d Representative immunofluorescence images showing longitudinal capillaries IB4, green covered by pericytes PDGFRÎČ, red. Bar graphs report the quantitative analysis of pericyte coverage. e Representative immunofluorescence images of mice hearts showing endothelial cells IB4, green, pericytes PDGFRÎČ, red, and TUNEL-positive nuclei apoptotic nuclei, magenta. Bar graphs report the quantification of TUNEL+ pericytes. f Measurement of C5a in mice plasma using ELISA. g Immunohistochemistry/DAB staining and a bar graph showing the accumulation of the activated complement factor C5a in the mice hearts. Nuclei are shown in blue Haematoxylin. The graph reports the integrated optical density IOD values. Representative immunofluorescence images of mice hearts showing the presence of neutrophils/monocytes h—Ly6G/6 C, green and macrophages i—F4/80, green. Cardiomyocytes are labeled with α-Sarcomeric Actin red. Bar graphs report the density of Ly6G/6 C+ neutrophils/monocytes and F4/80+ macrophages. In all immunofluorescence images, DAPI labels nuclei in blue. For all images, the scale bar is 50 ÎŒm. For all analyses, n = 6 per group. All data are presented as individual values and means ± SEM. Statistical tests after a normality test, an unpaired t-Test was applied. j–l RNA-Sequencing analysis of human cardiac pericytes challenged with the S-protein in vitro. n = 3 patients. j Experimental design and volcano plot showing transcripts differentially expressed in S-protein-treated nM human cardiac pericytes vs. PBS vehicle-treated pericytes. The terms of the most relevant genes were reported. k Bar graph indicating all differentially expressed KEGG pathways. l Bar graphs indicating the most relevant differentially expressed Reactome pathways. FDR = false discovery rate. Genes were considered differentially expressed for FDR ≀ m–p Sn-RNA-Sequencing analysis of pericytes from COVID-19 patients’ hearts. n = 22 COVID patients, n = 25 controls. m Plots show the ordering of pericytes in pseudo-time. The starting point of pseudo-time is from the pericytes of healthy donors. n A heatmap summarizing the mean expression of normalized unique molecular identifiers UMIs of genes in the modules resulting from the pseudo-time analysis. o A volcano plot showing fold-change of module expression COVID-19 compared to healthy donors and enrichment significance of each module and differentially expressed genes from bulk RNA-Sequencing comparing PBS-vehicle and Spike. p A plot summarising overlapped/similar Reactome and Gene Ontology terms overrepresented in each module and differentially expressed genes in bulk RNA-Sequencing. q Schematic summarizing major findings and candidate mechanisms underpinning the S-protein damaging action. Left panel We provide novel evidence that S-protein alone can damage the heart microvasculature of otherwise healthy mice. On one side, the S-protein acts as a ligand activating intracellular pericyte signaling, which results in pericyte detachment, death, and decreased vascular coverage, thus disrupting the coronary microcirculation. On the other, the S-protein triggers endothelial activation ICAM-1+ endothelial cells, resulting in increased homing of leukocytes to the heart and accumulation of activated complement protein C5a. Right panel A comparison between the expressional changes induced by the S-protein in primary human cardiac pericytes in vitro and single-nuclei sn-RNA-Sequencing pseudo-time trajectories analysis in pericytes extracted from the heart of deceased COVID-19 patients revealed overlapping expressional responses as indicated. These findings suggest that at least some of the in vivo effects of SARS-CoV-2 on human cardiac pericytes may be due to the modulation of inflammatory and epigenetic pathways triggered by the S-protein interaction with its cell surface receptors. The drawing was created with size imageTo further validate the theory of the S-protein acting as a direct transcriptomic influencer, we added it or the PBS vehicle to human primary cardiac pericytes in vitro for 48 h. RNA-Sequencing analysis indicated the differential modulation of 309 RNA transcripts, with 201 genes being up-regulated and 108 genes down-regulated by the S-protein at FDR < Fig. 1j. KEGG pathway analysis showed an overrepresentation of inflammatory pathways, for example, TNF, IL-17, and NF-kappa B signaling pathways, cytokine-cytokine receptor interaction, and cell adhesion molecules CAMs. Moreover, there was an enrichment for pathways associated with infectious diseases, including Legionellosis, Pertussis, Malaria, Herpes virus, and Epstein-Barr virus infection Fig. 1k. An overview of the pathway analysis based on the Reactome database further pinpointed the transcriptional induction of cytokine signaling pathways, such as IL-10, IL-4, and IL-13 signaling and Toll-like receptor cascade Fig. 1l and Supplementary Fig. S2, and the downregulation of pathways implicated in histone deacetylation and methylation and chromatin modification, and RNA polymerase-related mechanisms controlling promoter opening and clearance, transcription, and chain elongation Fig. 1l and Supplementary Fig. S2. The analysis of modulated biological processes confirmed the upregulation of cellular responses to stress and the downregulation of homeostatic responses associated with healing and angiogenesis processes Supplementary Fig. S3. A comprehensive list of regulated pathways is provided in Supplementary Dataset to dissect clinically relevant targets further, we cross-interrogated the transcriptional landscape of pericytes exposed in vitro to the recombinant S-protein and pericytes from the hearts of COVID-19 patients. Additionally, we employed a pseudo-time inference approach to probe individual genes’ expression dynamics along with the progression of the disease. To this aim, we extracted pericytes from the integrated Seurat, R object downloaded from Delorey et al., 20219 using marker genes followed by a pseudo-time analysis of pericytes collected from the heart of COVID-19 patients Fig. 1m. The pseudo-time analysis allowed the identification of pericyte genes that are differential and co-expressed along the trajectory. This resulted in the recognition of 37 gene clusters Fig. 1n. Next, to identify common signals between ex vivo and in vivo datasets, we tested for the overrepresentation of expressional changes in pericytes exposed to S-protein and gene clusters in the human heart. We observed that seven gene clusters 1, 2, 6, 13, 15, 20, and 27, FDR < significantly overlapped with the expressional changes observed in pericytes exposed to the S-protein experiment Fig. 1o. Cluster 15 was enriched for cytokine-related pathways, metallothioneins, and regulation of histone acetylation, while clusters 1, 6 and 27 were overrepresented for extracellular matrix organization, elastic fibre formation, and integrin cell surface interactions Fig. 1p and Supplementary Dataset 2. Studies have reported that COVID-19 can cause cardiovascular complications due to impaired extracellular matrix organisation and reduced elastic fibre levels, potentially leading to blood These findings suggest a convergence of signals that proteins of the virion envelope mediate at least part of the transcriptional changes induced by the virus in the hearts of infected people. Therefore, some of the in vivo effects of SARS-CoV-2 on human cardiac pericytes may be attributable to the interaction between the S-protein and the host’s transcriptomic program modulating inflammatory and epigenetic we performed drug target enrichment analysis using the LINCS L1000CDS and DrugBank databases. This analysis allowed us to identify drugs that reverse the expressional changes induced by the S-protein in pericytes Supplementary Dataset 3 and 4. Among the top fifty compounds, we found a prevalence of anti-tumoral, pro-apoptotic, anti-viral, anti-inflammatory and anti-thrombotic drugs, some of which have already been trialed in COVID-19 patients. Although more research is needed to determine if pharmacological interference with the signaling emanating from the S-protein can alleviate COVID-19 outcomes, these data suggest a competitive effect of anti-inflammatory and anti-tumoral drugs. In addition, several compounds like Quercetin or ubiquitin-conjugating enzyme inhibitors may help moderate inflammation by eliminating S-Protein-induced senescent summarized in Fig. 1q provide novel evidence of the SARS-CoV-2 S-protein’s direct pathogenic action on cardiac pericytes and the heart’s microvasculature. It is plausible that the harmful effects observed in healthy mice three days after a single systemic injection of the S-protein might be intensified in the presence of cardiovascular risk factors and prolonged exposure. These possibilities merit further investigation. Moreover, we showed that the S-protein modifies the transcriptional program of human cells to the virus’ advantage. This new information could have significant implications for the treatment of COVID-19, for instance, using anti-S-protein engineering approaches to protect vascular cells. Data availabilityThe article’s data can be obtained as reasonably required from the corresponding author. The main datasets underlying transcriptomic analyses are provided as supplementary datasets Dataset 1–4. The bulk RNA-Seq raw data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number N. et al. Glycated ACE2 receptor in diabetes open door for SARS-COV-2 entry in cardiomyocyte. Cardiovasc. Diabetol. 20, 99 2021.Article PubMed PubMed Central Google Scholar Sardu, C. et al. Could Anti-Hypertensive Drug Therapy Affect the Clinical Prognosis of Hypertensive Patients With COVID-19 Infection? Data From Centers of Southern Italy. J. Am. Heart Assoc. 9, e016948 2020.Article PubMed PubMed Central Google Scholar Tucker, N. R. et al. Myocyte-Specific Upregulation of ACE2 in Cardiovascular Disease Implications for SARS-CoV-2-Mediated Myocarditis. Circulation 142, 708–710 2020.CAS PubMed PubMed Central Google Scholar Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 2021.Article CAS PubMed PubMed Central Google Scholar Daems, M. et al. SARS-CoV-2 infection causes prolonged cardiomyocyte swelling and inhibition of HIF1alpha translocation in an animal model COVID-19. Front. Cardiovasc. Med. 9, 964512 2022.Article CAS PubMed PubMed Central Google Scholar Khan, A. O. et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc. Res. 118, 3085–3096 2022.Article CAS PubMed PubMed Central Google Scholar Avolio, E. et al. The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling a potential non-infective mechanism of COVID-19 microvascular disease. Clin. Sci. 135, 2667–2689 2021.Article CAS Google Scholar Afzali, B., Noris, M., Lambrecht, B. N. & Kemper, C. The state of complement in COVID-19. Nat. Rev. Immunol. 22, 77–84 2022.Article CAS PubMed Google Scholar Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 2021.Article CAS PubMed PubMed Central Google Scholar Shi, S. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 2020.Article PubMed PubMed Central Google Scholar Download referencesAcknowledgementsThe authors wish to acknowledge the members of the University of Bristol COVID-19 Emergency Research Group UNCOVER for their scientific support. Drawings were generated with work was supported by the British Heart Foundation BHF project grant “Targeting the SARS-CoV-2 S-protein binding to the ACE2 receptor to preserve human cardiac pericytes function in COVID-19” PG/20/10285 to and European Commission H2020 CORDIS project COVIRNA project/id/101016072 to and and BHF Chair award CH/15/1/31199 to In addition, it was supported by a grant from the National Institute for Health Research NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol. is a postdoctoral researcher supported by the Heart Research UK translational project grant “Targeting pericytes for halting pulmonary hypertension in infants with congenital heart disease” RG2697/21/23 to and is an investigator of the Wellcome Trust 106115/Z/14/Z.Author informationAuthor notesThese authors contributed equally Elisa Avolio, Prashant K SrivastavaAuthors and AffiliationsBristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UKElisa Avolio, Michele Carrabba, Christopher T. W. Tsang, Yue Gu, Anita C. Thomas & Paolo MadedduNational Heart & Lung Institute, Imperial College, London, UKPrashant K. Srivastava, Jiahui Ji & Costanza EmanueliSchool of Biochemistry, University of Bristol, Bristol, UKKapil Gupta & Imre BergerAuthorsElisa AvolioYou can also search for this author in PubMed Google ScholarPrashant K. SrivastavaYou can also search for this author in PubMed Google ScholarJiahui JiYou can also search for this author in PubMed Google ScholarMichele CarrabbaYou can also search for this author in PubMed Google ScholarChristopher T. W. TsangYou can also search for this author in PubMed Google ScholarYue GuYou can also search for this author in PubMed Google ScholarAnita C. ThomasYou can also search for this author in PubMed Google ScholarKapil GuptaYou can also search for this author in PubMed Google ScholarImre BergerYou can also search for this author in PubMed Google ScholarCostanza EmanueliYou can also search for this author in PubMed Google ScholarPaolo MadedduYou can also search for this author in PubMed Google research conception and design. manuscript writing. histological analyses of mice hearts. cellular and molecular biology experiments. transcriptomic analyses in pericytes. in vivo procedures with mice. production and provision of Spike protein. funding, supervision of transcriptomic studies, and manuscript editing. funding provision. study supervision. All authors data interpretation and manuscript revision. All authors approved the authorship and the final version of the manuscript for authorCorrespondence to Paolo declarations Competing interests The authors declare no competing interests. Ethics declarations The animal study was covered by a license from the British Home Office PPL 1377882 and complied with EU Directive 2010/63/EU. Procedures were carried out according to the principles in the Guide for the Care and Use of Laboratory Animals The Institute of Laboratory Animal Resources, 1996. Termination was conducted according to humane methods outlined in the Guidance on the Operation of the Animals Scientific Procedures Act 1986 Home Office 2014. The collection of human patients’ cardiac waste tissue was covered by the ethical approval number 15/LO/1064 from the North Somerset and South Bristol Research Ethics Committee. Patients gave informed written consent. Supplementary informationRights and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit Reprints and PermissionsAbout this articleCite this articleAvolio, E., Srivastava, Ji, J. et al. Murine studies and expressional analyses of human cardiac pericytes reveal novel trajectories of SARS-CoV-2 Spike protein-induced microvascular damage. Sig Transduct Target Ther 8, 232 2023. citationReceived 11 January 2023Revised 28 April 2023Accepted 08 May 2023Published 02 June 2023DOI

STANDARQ COVID-19 Ag Test adalah uji immunoassay kromatografi cepat untuk deteksi kualitatif antigen spesifik untuk SARS-CoV-2 yang ada di nasofaring manusia. Tes ini untuk administrasi oleh petugas kesehatan dan laboratorium saja, sebagai bantuan untuk diagnosis dini infeksi SARS-CoV-2 pada pasien dengan gejala klinis dengan infeksi SARS-CoV-2.

. 2021 Mar 19;594e03149-20. doi Print 2021 Mar 19. Affiliations PMID 33483360 PMCID PMC8092751 DOI Free PMC article Quantitative Measurement of Anti-SARS-CoV-2 Antibodies Analytical and Clinical Evaluation Victoria Higgins et al. J Clin Microbiol. 2021. Free PMC article Abstract The severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 is the causative agent of coronavirus disease 2019 COVID-19. Molecular-based testing is used to diagnose COVID-19, and serologic testing of antibodies specific to SARS-CoV-2 is used to detect past infection. While most serologic assays are qualitative, a quantitative serologic assay was recently developed that measures antibodies against the S protein, the target of vaccines. Quantitative antibody determination may help determine antibody titer and facilitate longitudinal monitoring of the antibody response, including antibody response to vaccines. We evaluated the quantitative Roche Elecsys anti-SARS-CoV-2 S assay. Specimens from 167 PCR-positive patients and 103 control specimens were analyzed using the Elecsys anti-SARS-CoV-2 S assay on the cobas e411 Roche Diagnostics. Analytical evaluation included assessing linearity, imprecision, and analytical sensitivity. Clinical evaluation included assessing clinical sensitivity, specificity, cross-reactivity, positive predictive value PPV, negative predictive value NPV, and serial sampling from the same patient. The Elecsys anti-SARS-CoV-2 S assay exhibited its highest sensitivity at 15 to 30 days post-PCR positivity and exhibited no cross-reactivity, a specificity and PPV of 100%, and an NPV between and at ≄14 days post-PCR positivity, depending on the seroprevalence estimate. Imprecision was 30, 0 to 14, and ≄14 days post-PCR positivity for the quantitative Roche Elecsys anti-SARS-CoV-2 S assay using serum or plasma samples collected from 167 patients confirmed SARS-CoV-2 positive within the previous 0 to 73 days. FIG 2 Anti-SARS-CoV-2 antibody response by days post-PCR positivity in five patients as measured by the quantitative Roche Elecsys anti-SARS-CoV-2 S assay. Similar articles Anti-SARS-CoV-2 IgM improves clinical sensitivity early in disease course. Higgins V, Fabros A, Wang XY, Bhandari M, Daghfal DJ, Kulasingam V. Higgins V, et al. Clin Biochem. 2021 Apr;901-7. doi Epub 2021 Jan 19. Clin Biochem. 2021. PMID 33476578 Free PMC article. Analytical and Clinical Evaluation of the Automated Elecsys Anti-SARS-CoV-2 Antibody Assay on the Roche cobas e602 Analyzer. Chan CW, Parker K, Tesic V, Baldwin A, Tang NY, van Wijk XMR, Yeo KJ. Chan CW, et al. Am J Clin Pathol. 2020 Oct 13;1545620-626. doi Am J Clin Pathol. 2020. PMID 32814955 Free PMC article. Head-to-Head Comparison of Two SARS-CoV-2 Serology Assays. Merrill AE, Jackson JB, Ehlers A, Voss D, Krasowski MD. Merrill AE, et al. J Appl Lab Med. 2020 Nov 1;561351-1357. doi J Appl Lab Med. 2020. PMID 32717056 Free PMC article. [SARS-CoV-2 and Microbiological Diagnostic Dynamics in COVID-19 Pandemic]. Erensoy S. Erensoy S. Mikrobiyol Bul. 2020 Jul;543497-509. doi Mikrobiyol Bul. 2020. PMID 32755524 Review. Turkish. Performance of Elecsys Anti-SARS CoV-2 Roche and VIDAS Anti-SARS CoV-2 BiomĂ©rieux for SARS-CoV-2 Nucleocapsid and Spike Protein Antibody Detection. InĂ©s RM, Gabriela HTM, Paula CM, Magdalena TM, Jimena A, Salome KB, Javier AJ, SebastiĂĄn B, Lorena S, AdriĂĄn DL, Elisa R, Mauricio B, Tersita BM, VerĂłnica GS, Beatriz IM. InĂ©s RM, et al. EJIFCC. 2022 Aug 8;332159-165. eCollection 2022 Aug. EJIFCC. 2022. PMID 36313907 Free PMC article. Review. Cited by Association between reactogenicity and immunogenicity after BNT162b2 booster vaccination a secondary analysis of a prospective cohort study. Jorda A, Bergmann F, Ristl R, Radner H, Sieghart D, Aletaha D, Zeitlinger M. Jorda A, et al. Clin Microbiol Infect. 2023 May 25S1198-743X2300252-5. doi Online ahead of print. Clin Microbiol Infect. 2023. PMID 37244466 Free PMC article. Variation in antibody titers determined by Abbott and Roche Elecsys SARS-CoV-2 assays in vaccinated healthcare workers. Nakai M, Yokoyama D, Sato T, Sato R, Kojima C, Shimosawa T. Nakai M, et al. Heliyon. 2023 Jun;96e16547. doi Epub 2023 May 22. Heliyon. 2023. PMID 37235203 Free PMC article. Anti-N SARS-CoV-2 assays for evaluation of natural viral infection. Gaeta A, Angeloni A, Napoli A, Pucci B, Cinti L, Roberto P, Colaiacovo F, Berardelli E, Farina A, Antonelli G, Anastasi E. Gaeta A, et al. J Immunol Methods. 2023 Jul;518113486. doi Epub 2023 May 6. J Immunol Methods. 2023. PMID 37156408 Free PMC article. Humoral Immune Response Following SARS-CoV-2 mRNA Vaccination and Infection in Pediatric-Onset Multiple Sclerosis. Breu M, Lechner C, Schneider L, Tobudic S, Winkler S, Siegert S, Baumann M, Seidl R, Berger T, Kornek B. Breu M, et al. Pediatr Neurol. 2023 Jun;14319-25. doi Epub 2023 Mar 2. Pediatr Neurol. 2023. PMID 36966598 Free PMC article. SARS-CoV-2-reactive antibody waning, booster effect and breakthrough SARS-CoV-2 infection in hematopoietic stem cell transplant and cell therapy recipients at one year after vaccination. Piñana JL, Martino R, Vazquez L, LĂłpez-Corral L, PĂ©rez A, ChorĂŁo P, Avendaño-Pita A, Pascual MJ, SĂĄnchez-Salinas A, Sanz-Linares G, Olave MT, Arroyo I, Tormo M, Villalon L, Conesa-Garcia V, Gago B, Terol MJ, Villalba M, Garcia-Gutierrez V, Cabero A, HernĂĄndez-Rivas JÁ, Ferrer E, GarcĂ­a-Cadenas I, Teruel A, Navarro D, Cedillo Á, Sureda A, Solano C; Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group GETH-TC. Piñana JL, et al. Bone Marrow Transplant. 2023 May;585567-580. doi Epub 2023 Feb 28. Bone Marrow Transplant. 2023. PMID 36854892 Free PMC article. References Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso JM, Gregg AC, Soares DJ, Beskid TR, Jervey SR, Liu C. 2020. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci 6591–605. doi - DOI - PMC - PubMed Van Caeseele P, Bailey D, Forgie SE, Dingle TC, Krajden M, COVID-19 Immunity Task Force. 2020. SARS-CoV-2 COVID-19 serology implications for clinical practice, laboratory medicine and public health. CMAJ 192E973–E979. doi - DOI - PMC - PubMed Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, Adriano A, Beese S, Dretzke J, Ferrante di Ruffano L, Harris IM, Price MJ, Dittrich S, Emperador D, Hooft L, Leeflang MM, Van den Bruel A, Cochrane COVID-19 Diagnostic Test Accuracy Group. 2020. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 6CD013652. doi - DOI - PMC - PubMed Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, Liao P, Qiu J-F, Lin Y, Cai X-F, Wang D-Q, Hu Y, Ren J-H, Tang N, Xu Y-Y, Yu L-H, Mo Z, Gong F, Zhang X-L, Tian W-G, Hu L, Zhang X-X, Xiang J-L, Du H-X, Liu H-W, Lang C-H, Luo X-H, Wu S-B, Cui X-P, Zhou Z, Zhu M-M, Wang J, Xue C-J, Li X-F, Wang L, Li Z-J, Wang K, Niu C-C, Yang Q-J, Tang X-J, Zhang Y, Liu X-M, Li J-J, Zhang D-C, Zhang F, Liu P, Yuan J, Li Q, Hu J-L, Chen J, et al. 2020. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26845–848. doi - DOI - PubMed Kofler N, Baylis F. 2020. Ten reasons why immunity passports are a bad idea. Nature 581379–381. doi - DOI - PubMed MeSH terms Substances LinkOut - more resources Full Text Sources Atypon Europe PubMed Central PubMed Central Other Literature Sources scite Smart Citations Medical Genetic Alliance MedlinePlus Health Information Miscellaneous NCI CPTAC Assay Portal
Everyonewho has symptoms that are consistent with COVID-19 and people with known high-risk exposures to SARS-CoV-2 should be tested for SARS-CoV-2 infection. Such testing should employ either a nucleic acid amplification test (NAAT) or an antigen test to detect SARS-CoV-2. Testing may also be used for screening, determining the length of a
Brief Communication Published 29 April 2020 Bai-Zhong Liu2 na1, Hai-Jun Deng ORCID na1, Gui-Cheng Wu3,4 na1, Kun Deng5 na1, Yao-Kai Chen6 na1, Pu Liao7, Jing-Fu Qiu8, Yong Lin ORCID Xue-Fei Cai1, De-Qiang Wang1, Yuan Hu1, Ji-Hua Ren1, Ni Tang1, Yin-Yin Xu2, Li-Hua Yu2, Zhan Mo2, Fang Gong2, Xiao-Li Zhang2, Wen-Guang Tian2, Li Hu2, Xian-Xiang Zhang3,4, Jiang-Lin Xiang3,4, Hong-Xin Du3,4, Hua-Wen Liu3,4, Chun-Hui Lang3,4, Xiao-He Luo3,4, Shao-Bo Wu3,4, Xiao-Ping Cui3,4, Zheng Zhou3,4, Man-Man Zhu5, Jing Wang6, Cheng-Jun Xue6, Xiao-Feng Li6, Li Wang6, Zhi-Jie Li7, Kun Wang7, Chang-Chun Niu7, Qing-Jun Yang7, Xiao-Jun Tang8, Yong Zhang ORCID Xia-Mao Liu9, Jin-Jing Li9, De-Chun Zhang10, Fan Zhang10, Ping Liu11, Jun Yuan1, Qin Li12, Jie-Li Hu ORCID Juan Chen ORCID & 
Ai-Long Huang ORCID Nature Medicine volume 26, pages 845–848 2020Cite this article 824k Accesses 5536 Citations 4038 Altmetric Metrics details Subjects AbstractWe report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G IgG. Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT–PCR results and for the identification of asymptomatic infections. MainThe continued spread of coronavirus disease 2019 COVID-19 has prompted widespread concern around the world, and the World Health Organization WHO, on 11 March 2020, declared COVID-19 a pandemic. Studies on severe acute respiratory syndrome SARS and Middle East respiratory syndrome MERS showed that virus-specific antibodies were detectable in 80–100% of patients at 2 weeks after symptom onset1,2,3,4,5,6. Currently, the antibody responses against SARS-CoV-2 remain poorly understood and the clinical utility of serological testing is total of 285 patients with COVID-19 were enrolled in this study from three designated hospitals; of these patients, 70 had sequential samples available. The characteristics of these patients are summarized in Supplementary Tables 1 and 2. We validated and used a magnetic chemiluminescence enzyme immunoassay MCLIA for virus-specific antibody detection Extended Data Fig. 1a–d and Supplementary Table 3. Serum samples from patients with COVID-19 showed no cross-binding to the S1 subunit of the SARS-CoV spike antigen. However, we did observe some cross-reactivity of serum samples from patients with COVID-19 to nucleocapsid antigens of SARS-CoV Extended Data Fig. 1e. The proportion of patients with positive virus-specific IgG reached 100% approximately 17–19 days after symptom onset, while the proportion of patients with positive virus-specific IgM reached a peak of approximately 20–22 days after symptom onset Fig. 1a and Methods. During the first 3 weeks after symptom onset, there were increases in virus-specific IgG and IgM antibody titers Fig. 1b. However, IgM showed a slight decrease in the >3-week group compared to the ≀3-week group Fig. 1b. IgG and IgM titers in the severe group were higher than those in the non-severe group, although a significant difference was only observed in IgG titer in the 2-week post-symptom onset group Fig. 1c, P = 1 Antibody responses against Graph of positive rates of virus-specific IgG and IgM versus days after symptom onset in 363 serum samples from 262 patients. b, Levels of antibodies against SARS-CoV-2 in patients at different times after symptom onset. c, Comparison of the level of antibodies against SARS-CoV-2 between severe and non-severe patients. The boxplots in b and c show medians middle line and third and first quartiles boxes, while the whiskers show the interquartile range IQR above and below the box. Numbers of patients N are shown underneath. P values were determined with unpaired, two-sided Mann–Whitney DataFull size imageSixty-three patients with confirmed COVID-19 were followed up until discharge. Serum samples were collected at 3-day intervals. Among these, the overall seroconversion rate was 61/63 over the follow-up period. Two patients, a mother and daughter, maintained IgG- and IgM-negative status during hospitalization. Serological courses could be followed for 26 patients who were initially seronegative and then underwent seroconversion during the observation period. All these patients achieved seroconversion of IgG or IgM within 20 days after symptom onset. The median day of seroconversion for both IgG and IgM was 13 days post symptom onset. Three types of seroconversion were observed synchronous seroconversion of IgG and IgM nine patients, IgM seroconversion earlier than that of IgG seven patients and IgM seroconversion later than that of IgG ten patients Fig. 2a. Longitudinal antibody changes in six representative patients of the three types of seroconversion are shown in Fig. 2b–d and Extended Data Fig. 2a– 2 Seroconversion time of the antibodies against Seroconversion type of 26 patients who were initially seronegative during the observation period. The days of seroconversion for each patient are plotted. b–d, Six representative examples of the three seroconversion type synchronous seroconversion of IgG and IgM b, IgM seroconversion earlier than that of IgG c and IgM seroconversion later than that of IgG c.Full size imageIgG levels in the 19 patients who underwent IgG seroconversion during hospitalization plateaued 6 days after the first positive IgG measurement Extended Data Fig. 3. Plateau IgG levels varied widely more than 20-fold across patients. IgM also showed a similar profile of dynamic changes Extended Data Fig. 4. We found no association between plateau IgG levels and the clinical characteristics of the patients Extended Data Fig. 5a–d. We next analyzed whether the criteria for confirmation of MERS-CoV infection recommended by WHO, including 1 seroconversion or 2 a fourfold increase in IgG-specific antibody titers, are suitable for the diagnosis of COVID-19 using paired samples from 41 patients. The initial sample was collected in the first week of illness and the second was collected 2–3 weeks later. Of the patients whose IgG was initially seronegative in the first week of illness, 21/41 underwent seroconversion. A total of 18 patients were initially seropositive in the first week of illness; of these, eight patients had a fourfold increase in virus-specific IgG titers Extended Data Fig. 6. Overall, 29/41 of the patients with COVID-19 met the criteria of IgG seroconversion and/or fourfold increase or greater in the IgG investigate whether serology testing could help identify patients with COVID-19, we screened 52 suspected cases in patients who displayed symptoms of COVID-19 or abnormal radiological findings and for whom testing for viral RNA was negative in at least two sequential samples. Of the 52 suspected cases, four had virus-specific IgG or IgM in the initial samples Extended Data Fig. 7. Patient 3 had a greater than fourfold increase in IgG titer 3 days after the initial serology testing. Interestingly, patient 3 also tested positive for viral infection by polymerase chain reaction with reverse transcription RT–PCR between the two antibody measurements. IgM titer increased over three sequential samples from patient 1 1 was defined as positive and S/CO ≀ 1 as of IgG and IgM against SARS-CoV-2To measure the level of IgG and IgM against SARS-CoV-2, serum samples were collected from the patients. All serum samples were inactivated at 56 °C for 30 min and stored at −20 °C before testing. IgG and IgM against SARS-CoV-2 in plasma samples were tested using MCLIA kits supplied by Bioscience Co. approved by the China National Medical Products Administration; approval numbers 20203400183IgG and 20203400182IgM, according to the manufacturer’s instructions. MCLIA for IgG or IgM detection was developed based on a double-antibody sandwich immunoassay. The recombinant antigens containing the nucleoprotein and a peptide from the spike protein of SARS-CoV-2 were conjugated with FITC and immobilized on anti-FITC antibody-conjugated magnetic particles. Alkaline phosphatase conjugated anti-human IgG/IgM antibody was used as the detection antibody. The tests were conducted on an automated magnetic chemiluminescence analyzer Axceed 260, Bioscience according to the manufacturer’s instructions. All tests were performed under strict biosafety conditions. The antibody titer was tested once per serum sample. Antibody levels are presented as the measured chemiluminescence values divided by the cutoff S/CO. The cutoff value of this test was defined by receiver operating characteristic curves. Antibody levels in the figures were calculated as log2S/CO + 1.Performance evaluation of the SARS-CoV-2-specific IgG/IgM detection assayThe precision and reproducibility of the MCLIA kits were first evaluated by the National Institutes for Food and Drug Control. Moreover, 30 serum samples from patients with COVID-19 showing different titers of IgG range and IgM range were tested. Each individual sample was tested in three independent experiments, and the coefficient of variation CV was used to evaluate the precision of the assay. Finally, 46 serum samples from patients with COVID-19 were assessed using different batches of the diagnostic kit for SARS-CoV-2-specific IgG or IgM antibody; reproducibility was calculated based on the results from two batch of antigens from SARS-CoV and SARS-CoV-2Two recombinant SARS-CoV nucleocapsid N proteins from two different sources Sino Biological, cat. no. 40143-V08B; Biorbyt, cat. no. orb82478, the recombinant S1 subunit of the SARS-CoV spike Sino Biological, cat. no. 40150-V08B1 and the homemade recombinant N protein of SARS-CoV-2 were used in a chemiluminescence enzyme immunoassay CLEIA, respectively. The concentration of antigens used for plate coating was ÎŒg ml−1. The dilution of alkaline phosphatase conjugated goat anti-human IgG antibody was 12,500. Five serum samples from patients with COVID-19 and five serum samples from healthy controls were diluted 150 and tested using CLEIA assays. The binding ability of antibody to antigen in a sample was measured in relative luminescence analysesContinuous variables are expressed as the median IQR and were compared with the Mann–Whitney U-test. Categorical variables are expressed as numbers % and were compared by Fisher’s exact test. A P value of < was considered statistically significant. Statistical analyses were performed using R software, version approvalThe study was approved by the Ethics Commission of Chongqing Medical University ref. no. 2020003. Written informed consent was waived by the Ethics Commission of the designated hospital for emerging infectious SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. Data availabilityRaw data in this study are provided in the Supplementary Dataset. Additional supporting data are available from the corresponding authors on request. All requests for raw and analyzed data and materials will be reviewed by the corresponding authors to verify whether the request is subject to any intellectual property or confidentiality obligations. Source data for Fig. 1 and Extended Data Figs. 1 and 5 are available V. M. et al. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin. Infect. Dis. 62, 477–483 2016.CAS PubMed Google Scholar Li, G., Chen, X. & Xu, A. Profile of specific antibodies to the SARS-associated coronavirus. N. Engl. J. Med. 349, 508–509 2003.Article Google Scholar Hsueh, P. R., Huang, L. M., Chen, P. J., Kao, C. L. & Yang, P. C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 10, 1062–1066 2004.Article Google Scholar Park, W. B. et al. Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea. Emerg. Infect. Dis. 21, 2186–2189 2015.Article CAS Google Scholar Drosten, C. et al. Transmission of MERS-coronavirus in household contacts. N. Engl. J. Med. 371, 828–835 2014.Article Google Scholar Meyer, B., Drosten, C. & Muller, M. A. Serological assays for emerging coronaviruses challenges and pitfalls. Virus Res. 194, 175–183 2014.Article CAS Google Scholar Tang, Y. W., Schmitz, J. E., Persing, D. H. & Stratton, C. W. The laboratory diagnosis of COVID-19 infection current issues and challenges. J. Clin. Microbiol. 2020.Zou, L. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382, 1177–1179 2020.Article Google Scholar Download referencesAcknowledgementsWe thank Yang and Kwan for critical reviewing of the manuscript. This work was supported by the Emergency Project from the Science & Technology Commission of Chongqing and a Major National S&T Program grant 2017ZX10202203 and 2017ZX10302201 from the Science & Technology Commission of informationAuthor notesThese authors contributed equally Quan-Xin Long, Bai-Zhong Liu, Hai-Jun Deng, Gui-Cheng Wu, Kun Deng, Yao-Kai and AffiliationsKey Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, ChinaQuan-Xin Long, Hai-Jun Deng, Yong Lin, Xue-Fei Cai, De-Qiang Wang, Yuan Hu, Ji-Hua Ren, Ni Tang, Jun Yuan, Jie-Li Hu, Juan Chen & Ai-Long HuangYongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, ChinaBai-Zhong Liu, Yin-Yin Xu, Li-Hua Yu, Zhan Mo, Fang Gong, Xiao-Li Zhang, Wen-Guang Tian & Li HuChongqing University Three Gorges Hospital, Chongqing, ChinaGui-Cheng Wu, Xian-Xiang Zhang, Jiang-Lin Xiang, Hong-Xin Du, Hua-Wen Liu, Chun-Hui Lang, Xiao-He Luo, Shao-Bo Wu, Xiao-Ping Cui & Zheng ZhouChongqing Three Gorges Central Hospital, Chongqing, ChinaGui-Cheng Wu, Xian-Xiang Zhang, Jiang-Lin Xiang, Hong-Xin Du, Hua-Wen Liu, Chun-Hui Lang, Xiao-He Luo, Shao-Bo Wu, Xiao-Ping Cui & Zheng ZhouThe Third Hospital Affiliated to Chongqing Medical University, Chongqing, ChinaKun Deng & Man-Man ZhuDivision of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, ChinaYao-Kai Chen, Jing Wang, Cheng-Jun Xue, Xiao-Feng Li & Li WangLaboratory Department, Chongqing People’s Hospital, Chongqing, ChinaPu Liao, Zhi-Jie Li, Kun Wang, Chang-Chun Niu & Qing-Jun YangSchool of Public Health and Management, Chongqing Medical University, Chongqing, ChinaJing-Fu Qiu, Xiao-Jun Tang & Yong ZhangThe Second Affiliated Hospital of Chongqing Medical University, Chongqing, ChinaXia-Mao Liu & Jin-Jing LiWanzhou People’s Hospital, Chongqing, ChinaDe-Chun Zhang & Fan ZhangBioScience Co. Ltd, Chongqing, ChinaPing LiuChongqing Center for Disease Control and Prevention, Chongqing, ChinaQin LiAuthorsQuan-Xin LongYou can also search for this author in PubMed Google ScholarBai-Zhong LiuYou can also search for this author in PubMed Google ScholarHai-Jun DengYou can also search for this author in PubMed Google ScholarGui-Cheng WuYou can also search for this author in PubMed Google ScholarKun DengYou can also search for this author in PubMed Google ScholarYao-Kai ChenYou can also search for this author in PubMed Google ScholarPu LiaoYou can also search for this author in PubMed Google ScholarJing-Fu QiuYou can also search for this author in PubMed Google ScholarYong LinYou can also search for this author in PubMed Google ScholarXue-Fei CaiYou can also search for this author in PubMed Google ScholarDe-Qiang WangYou can also search for this author in PubMed Google ScholarYuan HuYou can also search for this author in PubMed Google ScholarJi-Hua RenYou can also search for this author in PubMed Google ScholarNi TangYou can also search for this author in PubMed Google ScholarYin-Yin XuYou can also search for this author in PubMed Google ScholarLi-Hua YuYou can also search for this author in PubMed Google ScholarZhan MoYou can also search for this author in PubMed Google ScholarFang GongYou can also search for this author in PubMed Google ScholarXiao-Li ZhangYou can also search for this author in PubMed Google ScholarWen-Guang TianYou can also search for this author in PubMed Google ScholarLi HuYou can also search for this author in PubMed Google ScholarXian-Xiang ZhangYou can also search for this author in PubMed Google ScholarJiang-Lin XiangYou can also search for this author in PubMed Google ScholarHong-Xin DuYou can also search for this author in PubMed Google ScholarHua-Wen LiuYou can also search for this author in PubMed Google ScholarChun-Hui LangYou can also search for this author in PubMed Google ScholarXiao-He LuoYou can also search for this author in PubMed Google ScholarShao-Bo WuYou can also search for this author in PubMed Google ScholarXiao-Ping CuiYou can also search for this author in PubMed Google ScholarZheng ZhouYou can also search for this author in PubMed Google ScholarMan-Man ZhuYou can also search for this author in PubMed Google ScholarJing WangYou can also search for this author in PubMed Google ScholarCheng-Jun XueYou can also search for this author in PubMed Google ScholarXiao-Feng LiYou can also search for this author in PubMed Google ScholarLi WangYou can also search for this author in PubMed Google ScholarZhi-Jie LiYou can also search for this author in PubMed Google ScholarKun WangYou can also search for this author in PubMed Google ScholarChang-Chun NiuYou can also search for this author in PubMed Google ScholarQing-Jun YangYou can also search for this author in PubMed Google ScholarXiao-Jun TangYou can also search for this author in PubMed Google ScholarYong ZhangYou can also search for this author in PubMed Google ScholarXia-Mao LiuYou can also search for this author in PubMed Google ScholarJin-Jing LiYou can also search for this author in PubMed Google ScholarDe-Chun ZhangYou can also search for this author in PubMed Google ScholarFan ZhangYou can also search for this author in PubMed Google ScholarPing LiuYou can also search for this author in PubMed Google ScholarJun YuanYou can also search for this author in PubMed Google ScholarQin LiYou can also search for this author in PubMed Google ScholarJie-Li HuYou can also search for this author in PubMed Google ScholarJuan ChenYou can also search for this author in PubMed Google ScholarAi-Long HuangYou can also search for this author in PubMed Google ScholarContributionsConceptualization was provided by The methodology was developed by P. Liu, and Investigations were carried out by and The original draft of the manuscript was written by and Review and editing of the manuscript were carried out by and Funding acquisition was performed by and Resources were provided by P. Liao, . and provided authorsCorrespondence to Jie-Li Hu, Juan Chen or Ai-Long declarations Competing interests The authors declare no competing interests. Additional informationPeer review information Saheli Sadanand was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional dataExtended Data Fig. 1 The performance evaluation of the SARS-CoV-2 specific IgG/IgM detection Thirty serum sample from COVID-19 patients showing different titers of IgG a range from to and IgM b range from to were tested. Each individual sample was tested in three independent experiment. CVs of titers of certain sample were calculated and presented. c,d. The correlation analysis of IgG and IgM titers serum samples from COVID-19 patients from 2 independent experiment. Forty-six serum samples from COVID-19 patients were detected using different batches of diagnostic kit for SARS-CoV-2 IgG c or IgM d antibody. Pearson correlation coefficients R are depicted in plots. For IgG, r = p = For IgM, r = p = e. The reactivity between COVID-19 patient serums N = 5 and SARS-CoV S1, N two sources and SARS-CoV-2 N protein were measured by ELISA. Serum samples from COVID-19 patients showed no cross-binding to SARS-CoV S1 antigen, while the reactivity between COVID-19 patient serums and SARS-CoV N antigen from different sources was inconsistent. Source Data Extended Data Fig. 2 Three types of Patients with a synchronous seroconversion of IgG and IgM N = 7. b. Seroconversion for IgG occurred later than that for IgMN = 5. c. Seroconversion for IgG occurred earlier than that for IgM N = 8.Extended Data Fig. 3 Dynamic changes of the SARS-CoV-2 specific course of the virus-specific IgG level in 19 patients experienced IgG titer plateau. IgG in each patient reached plateau within 6 days since IgG became Data Fig. 4 Dynamic changes of the SARS-CoV-2 specific course of the virus-specific IgM level in 20 patients experienced IgM titer plateau. IgM in each patient reached plateau within 6 days since IgM became Data Fig. 5 The association between the IgG levels at the plateau and clinical characteristics of the COVID-19 No significant difference in the IgG levels at the plateau was found between < 60 y group N = 11 and ≄ 60 y group N = 9. Unpaired, two-sided Mann-Whitney U test, p = b–d. No association was found between the IgG levels at the plateau and lymphocyte count b or CRP c or hospital stay d of the patients N = 20. Pearson correlation coefficients r and p value are depicted in plots. Source Data Extended Data Fig. 6 The assessment of MERS serological criteria for assessment of MERS serological criteria for COVID-19 confirmation were carried out in 41 patients with sequential samples. All 41 patients were classified into three groups based on IgG change from sequential samples, including 1 seroconversion, 2 fold change ≄ 4-fold in paired samples, 3 Data Fig. 7 Serology testing in identification of COVID-19 from 52 suspected of symptom onset, RT-PCR and serology testing in 4 cases developing positive IgG or/and IgM were Data Fig. 8 Serological survey in close contacts with COVID-19 cluster of 164 close contacts of known COVID-19 patients were tested by RT-PCR followed by serology testing. Serum samples were collected from these 164 individuals for antibody tests approximately 30 days after informationSource dataRights and permissionsAbout this articleCite this articleLong, QX., Liu, BZ., Deng, HJ. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26, 845–848 2020. citationReceived 24 March 2020Accepted 22 April 2020Published 29 April 2020Issue Date June 2020DOI This article is cited by
Laporanpertama yang dikonfirmasi tentang hewan peliharaan yang terinfeksi SARS-CoV-2 berasal dari Hong Kong. Sejak awal wabah di sana, pejabat pemerintah dengan Departemen Pertanian, Perikanan, dan Konservasi (AFCD) merekomendasikan agar hewan peliharaan mamalia dari rumah tangga dengan orang yang dirawat di rumah sakit karena
- Seperti diketahui, orang yang sudah pernah terinfeksi Covid-19 akan memiliki kekebalan tubuh atau antibodi terhadap serangan virus SARS-CoV-2 penyebab Covid-19 di masa depan. Namun, seberapa besar kekebalan tubuh orang yang pernah terpapar Covid-19?Mengenai persoalan ini, Dokter Spesialis Patologi Klinik Primaya Hospital Bekasi Barat dan Bekasi Timur, dr Muhammad Irhamsyah SpPK MKes angkat bicara. Irhamsyah menjelaskan bahwa terdapat metode pemeriksaan kekebalan tubuh manusia terhadap Covid-19 melalui pemeriksaan Antibodi SARS-CoV-2 kuantitatif. Baca juga Daftar 5 Kelompok Prioritas Vaksinasi Covid-19 Tahap Kedua, dari Guru hingga Pedagang Pemeriksaan Antibodi SARS-CoV-2 suatu pemeriksaan untuk mendeteksi suatu protein yang disebut antibodi, khususnya antibodi spesifik terhadap SARS-CoV-2 ini."Pemeriksaan ini dapat dilakukan pada orang-orang yang sudah pernah terinfeksi Covid-19, orang yang sudah mendapatkan vaksinasi, serta dapat digunakan untuk mengukur antibodi pada donor plasma konvalesen yang akan ditransfusikan,” kata Irhamsyah. Cara kerja pemeriksaan kuantitatif antibodi ECLIA Dijelaskan dr Irhamsyah, prinsip pemeriksaan kuantitatif antibodi spesifik SARS-CoV-2 ini menggunakan pemeriksaan laboratorium imunoserologi pada sebuah alat automatik autoanalyzer. Alat automatik ini dipergunakan untuk mendeteksi antibodi terhadap SAR-CoV-2. Pemeriksaan ini biasa disebut dengan Electro Chemiluminescence Immunoasssay ECLIA. ECLIA akan mendeteksi, mengikat, serta mengukur antibodi netralisasi. Sebagai informasi, antibodi netralisasi adalah antibodi yang dapat berikatan spesifik pada bagian struktur protein spike SARS-CoV-2. Protein spike adalah protein berbentuk paku yang tersebar di permukaan virus Covid-19, sebelum virus Covid-19 memasuki sel-sel pada tubuh kita dengan menggunakan label-label yang berikatan spesifik dengan antibodi netralisasi tersebut. Adapun, jenis sampel yang dapat digunakan dalam pemeriksaan ini yaitu sampel serum dan plasma dengan cara diambil darah vena. HasilTes Antibodi Kuantitatif COVID-19. Tingkat akurasi suatu tes antibodi dipengaruhi oleh seberapa sensitif dan spesifik alat dan metode yang digunakan untuk mendeteksi virus SARS-CoV-2. Berdasarkan uji penelitian yang ada, tes antibodi kuantitatif COVID-19 memiliki tingkat akurasi 99% hingga 100%. Identifikasiantibodi anti-SARS-CoV-2, IgG, IgA dan IgM, memainkan peran penting dalam penyelidikan dan pengawasan infeksi SARS-CoV-2. Kit ELISA IgG IgG SARS-CoV-2 S1RBD adalah ELISA yang sangat sensitif dan spesifik untuk deteksi dan pengukuran kuantitatif kelas IgG antibodi terhadap protein spike S1 receptor-binding domain (S1RBD) virus Namaproduk: Penganalisis kuantitatif imunofluoresensi Model Produk: Getein 1100 Jenama Produk: GP getein biotech, Inc. Pengenalan produk: Penganalisis Kuantitatif Imunofluoresensi Getein1100 adalah penganalisis diagnostik di tempat yang maju, yang bertujuan untuk memberikan hasil ujian yang tepat dalam beberapa minit hanya dari 3-4 tetes spesimen manusia. btu1gc.
  • 3afyb6jf6j.pages.dev/492
  • 3afyb6jf6j.pages.dev/310
  • 3afyb6jf6j.pages.dev/80
  • 3afyb6jf6j.pages.dev/351
  • 3afyb6jf6j.pages.dev/354
  • 3afyb6jf6j.pages.dev/217
  • 3afyb6jf6j.pages.dev/158
  • 3afyb6jf6j.pages.dev/272
  • anti sars cov 2 kuantitatif